[1] Muhammad, I., Lv, J.*, Wang, J.*, Ahmad, S., Farooq, S., Ali, S., Zhou, X., 2022. Regulation of soil microbial community structure and biomass to mitigate soil greenhouse gas emission. Frontiers in Microbiology 13, 868862.
https://doi.org/10.3389/fmicb.2022.868862
[2] Zhou, S., Chen, L., Wang, J., He, L., Wang, J.*, Ren, C., Guo, Y., Zhao, F., 2022. Stronger microbial decay of recalcitrant carbon in tropical forests than in subtropical and temperate forest ecosystems in China. Catena 215, 106351.
https://10.1016/j.catena.2022.106351
[3] Adil, M., Zhang, S., Wang, J.*, Shah, A.N., Tanveer, M., Fiaz, S., 2022. Effects of fallow management practices on soil water, crop yield and water use efficiency in winter wheat monoculture system: A meta-analysis. Frontiers in Plant Science 13.
https://doi.org/10.3389/fpls.2022.825309
[4] Zhang, S., Wang, J.*, Sainju, U.M., Ghimire, R., 2022. Soil water storage, winter wheat yield, and water‐use efficiency with cover crops and nitrogen fertilization. Agronomy Journal 114, 1361-1373.
https://doi.org/10.1002/agj2.21028.
[5] Zhou, S., Wang, J.*, Chen, L., Wang, J., Zhao, F., 2022. Microbial community structure and functional genes drive soil priming effect following afforestation. Science of the Total Environment 825, 153925. https://doi.org/10.1016/j.scitotenv.2022.153925
[6] Sainju, U.M., Ghimire, R., Wang, J., 2022. Relating soil organic carbon Fractions to crop yield and quality with covercrops. In: Lal, R. (Ed.), Soil organic matter and feeding the future. Taylor and Francis, Boca Raton, FL, pp. 65-90.
https://doi.org/10.1201/9781003102762-3
[7] Wang, J., Zhang, S., Sainju, U.M., Ghimire, R., Zhao, F., 2021. A meta-analysis on cover crop impact on soil water storage, succeeding crop yield, and water-use efficiency. Agricultural Water Management 256, 107085.
https://doi.org/ 10.1016/j.agwat.2021.107085
[8] Wang, J., Fu, X., Ghimire, R., Sainju, U.M., Jia, Y., Zhao, F., 2021. Responses of soil bacterial community and enzyme activity to organic matter components under long-term fertilization on the Loess Plateau of China. Applied Soil Ecology 166, 103992.
https://doi.org/ 10.1016/j.apsoil.2021.103992
[9] Raza, M.A., Gul, H., Wang, J.#, Yasin, H.S., Qin, R., Bin Khalid, M.H., Naeem, M., Feng, L.Y., Iqbal, N., Gitari, H., Ahmad, S., Battaglia, M., Ansar, M., Yang, F., Yang, W., 2021. Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: A case study in Punjab Province, Pakistan. Journal of Cleaner Production 308, 127282.
https://doi.org/ 10.1016/j.jclepro.2021.127282
[10] Muhammad, I., Wang, J.*, Sainju U.M., Zhang, S., Zhao, F., Khan, A., 2021. Cover cropping enhances soil microbial biomass and affects microbial community structure: A meta-analysis. Geoderma 381, 114696. https://doi.org/10.1016/j.geoderma.2020.114696 (ESI 1% 高被引论文和热点论文)
[11] Ghimire, R., Thapa, V.R., Acharya, P., Sainju, U.M., Wang, J., 2021. Soil indicators and management strategies for agroecosystem sustainability. Soil Science: Fundamentals to Recent Advances. Singapore: Springer., p. 127-140
[12] Ren, C., Zhang, X., Zhang, S., Wang, J., Xu, M., Guo, Y., Wang, J., Han, X., Zhao, F., Yang, G., Doughty, R., 2021. Altered microbial CAZyme families indicated dead biomass decomposition following afforestation. Soil Biology and Biochemistry 160, 108362.
https://doi.org/ 10.1016/j.soilbio.2021.108362
[13] Zhou, S. Wang, J*, Zhao F.Z., 2021. Soil stoichiometry influence C, N, and P distribution in soil aggregates after afforestation. Scientia Forestalis, 49(129), e3325.
https://doi.org/10.18671/scifor.v49n129.12
[14] Fu, X., Wang, J.*, Xie, M.Y., Zhao, F.Z., Doughty, R., 2020. Increasing temperature can modify the effect of straw mulching on soil C fractions, soil respiration, and microbial community composition. PLoS ONE 15(8), e0237245. https://doi.org/10.1371/journal.pone.0237245.
[15] Fu, X., Wang, J*., Sainju, U.M., Liu, W., 2019. Soil nitrogen fractions under long-term crop rotations in the Loess Plateau of China. Soil and Tillage Research 186, 42-51.
https://doi.org/10.1016/j.still.2018.10.004
[16] Muhammad, I., Sainju, U.M., Zhao, F., Khan, A., Ghimire, R., Fu, X., Wang, J.*, 2019. Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis. Soil and Tillage Research 192, 103-112.
https://doi.org/10.1016/j.still.2019.04.020
[17] Fu, X., Wang, J.*, Sainju, U.M., Zhao, F., Liu, W., 2019. Soil microbial community and carbon and nitrogen fractions responses to mulching under winter wheat. Applied Soil Ecology 139, 64-68.
https://10.1016/j.apsoil.2019.03.018
[18] Fu, X., Wang, J., Sainju, U.M., Liu, W., Naeth, M.A., 2019. Aggregate size distribution and associated carbon and nitrogen in mulched winter wheat and spring corn. Canadian Journal of Soil Science, 99, 1-13.
https://doi.org/10.1139/cjss-2019-0015
[19] Zhao F.Z., Bai L., Wang J.Y., Deng J., Ren C.J., Han X.H., Yang G.H., Wang J. Change in soil bacterial community during secondary succession depend on plant and soil characteristics. Catena, 2019, 173, 246-252.
https://doi.org/10.1016/j.catena.2018.10.024
[20] Zhao F.Z., Ren C.J., Han X.H., Yang G.H., Wang J., Doughty R., Wang Z.T. Trends in soil microbial communities in afforestation ecosystem modulated by aggradation phase. Forest Ecology and Management, 2019, 441, 167-175.
https://doi.org/10.1016/j.foreco.2019.03.036
[21] Wang, J., Fu, X., Sainju, U.M., Zhao, F., 2018. Soil carbon fractions in response to straw mulching in the Loess Plateau of China. Biology and Fertility of Soils 54, 423-436.
https://doi.org/10.1007/s00374-018-1271-z
[22] Wang, J., Fu, X., Zhao, F., Sainju, U.M., 2018. Response of soil carbon fractions and dryland maize yield to mulching. Soil Science Society of America Journal 82, 371-381.
https://doi.org/10.2136/sssaj2017.11.0397
[23] Wang, J., Ghimire, R., Fu, X., Sainju, U.M., Liu, W., 2018. Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield. Agricultural Water Management 206, 95-101. https://doi.org/10.1016/j.agwat.2018.05.004
[24] Muhammad, I., Khan, F.U., Khan, A., Wang, J.*, 2018. Soil fertility in response to urea and farmyard manure incorporation under different tillage systems in Peshawar, Pakistan. International Journal of Agriculture and Biology 20, 1539-1547.
https://doi.org/ 10.17957/ijab/15.0664
[25] Zhao F.Z., Ren C.J., Han X.H., Yang G.H., Wang J., Doughty R. 2018. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems. Forest Ecology and Management, 427, 289-295.
https://doi.org/10.1016/j.foreco.2018.06.011
[26] Zhao FZ, Fan XD, Ren CJ, Zhang L, Han XH, Yang GH, Wang J, Doughty R. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation. Catena, 2018, 171, 622-63.
https://doi.org/1.10.1016/j.catena.2018.08.006
[27] Zhao Fazhu, Ren Chenjie, Zhang Lu, Han Xinhui, Yang Gaihe, Wang Jun, 2018.Changes in soil microbial community are linked to soil carbon fractions after afforestation. European Journal of Soil Science, 69(2), 370-379.
https://doi.org/10.1111/ejss.12525
[28] Zhao F.-Z., Ren C.-J., Shelton S., Wang Z.-T., Pang G.-W., Chen J. Wang J*., 2017. Grazing intensity influence soil microbial communities and their implications for soil respiration Agriculture, Ecosystems and Environment, 249, 50-56.
https://doi.org/10.1016/j.agee.2017.08.007
[29] Fu, X., Wang, J*., Sainju U.M., Liu W.-Z., 2017. Soil Carbon Fractions in Response to Long-term Crop Rotations in the Loess Plateau of China. Soil Science Society of America Journal 81, 503-513.
https://doi.org/10.2136/sssaj2016.04.0122
[30] Zhao, F.-Z., Zhang, L., Sun, J., Ren, C.-J., Han, X.-H., Yang, G.-H., Wang, J.,* 2017. Effect of soil C, N and P stoichiometry on carbon fractions after afforestation. Pedosphere, 27 (4), 705-713.
https://doi.org/ 10.1016/s1002-0160(17)60479-x
[31] Zhao F.-Z., Zhang L., Sun J., Ren C.-J., Han X.-H., Yang G.-H., Wang J., 2016. Effect of microbial C, N and P stoichiometry on soil carbon fractions under a black locust (Robinia pseudoacacia) forest within the Central Loess Plateau of China. Soil Science Society of America Journal. 80, 1520-1530.
https://doi.org/10.2136/sssaj2016.06.0175
[32] Wang, J., Liu, Q.-Q., Chen, R.-R., Liu, W.-Z., Sainju, U.M., 2015. Soil carbon dioxide emissions in response to precipitation frequency in the Loess Plateau, China. Applied Soil Ecology 96, 288-295.
https://doi.org/ 10.1016/j.apsoil.2015.08.026
[33] Wang, J., Sainju, U.M., 2014. Soil Carbon and Nitrogen Fractions and Crop Yields Affected by Residue Placement and Crop Types. PLoS ONE 9, e105039.
https://doi.org/10.1371/journal.pone.0105039
[34] Wang, J., Sainju, U.M., 2014. Aggregate-Associated Carbon and Nitrogen Affected by Residue Placement, Crop Species, and Nitrogen Fertilization. Soil Science 179, 153-165.
https://doi.org/10.1097/SS.0000000000000051
[35] Sainju, U.M., Stevens, W.B., Caesar-TonThat, T., Liebig, M.A., Wang, J., 2014. Net Global Warming Potential and Greenhouse Gas Intensity Influenced by Irrigation, Tillage, Crop Rotation, and Nitrogen Fertilization. Journal of Environmental Quality 43, 777-788.
https://doi.org/10.2134/jeq2013.10.0405
[36] Sainju, U.M., Barsotti, J.L., Wang, J., 2014. Net Global Warming Potential and Greenhouse Gas Intensity Affected by Cropping Sequence and Nitrogen Fertilization. Soil Science Society of America Journal 78, 248-261.
https://doi.org/10.2136/sssaj2013.08.0325
[37] Wang Jun, Liu Wen-Zhao, Dang Ting-Hui, Sainju U.M. 2013. Nitrogen Fertilization Effect on Dryland Soil Water Balance and Winter Wheat Yield in the Chinese Loess Plateau. Agronomy Journal 105, 143-149.
https://doi.org/10.2134/agronj2012.0067
[38] Wang J., UM Sainju, JL Barsotti. 2012. Residue Placement and Rate, Crop Species, and Nitrogen Fertilization Effects on Soil Greenhouse Gas Emissions. Journal of Environmental Protection, 3, 1238-1250
https://doi.org/10.4236/jep.2012.329141
[39] Wang, J., Liu, W., Dang, T., 2011. Responses of soil water balance and precipitation storage efficiency to increased fertilizer application in winter wheat. Plant and Soil 347, 41-51.
https://doi.org/10.1007/s11104-011-0764-4
[40] Wang, J., Liu, W.-Z., Mu, H.-F., Dang, T.-H., 2010. Inorganic Phosphorus Fractions and Phosphorus Availability in a Calcareous Soil Receiving 21-Year Superphosphate Application. Pedosphere 20, 304-310.
https://doi.org/10.1016/s1002-0160(10)60018-5
[41] Liu, W., Zhang, X.C., Dang, T., Ouyang, Z., Li, Z., Wang, J., Wang, R., Gao, C., 2010. Soil water dynamics and deep soil recharge in a record wet year in the southern Loess Plateau of China. Agricultural Water Management 97, 1133-1138.
https://doi.org/j.agwat.2010.01.001
[42] Wang, J., Li, F.-M., Jia, Y., 2006. Responses of Soil Water, Nitrogen, and Organic Matter to the Alfalfa Crop Rotation in Semiarid Loess Area of China. Journal of Sustainable Agriculture 28, 117-130.
https://doi.org/10.1016/ 10.1300/J064v28n01_10
[43] Li, F.-M., Wang, J., Xu, J.-Z., 2005. Plastic Film Mulch Effect on Spring Wheat in a Semiarid Region. Journal of Sustainable Agriculture 25, 5-17.
https://doi.org/10.1300/J064v25n04_03
[44] Li, F.-M., Wang, J., Xu, J.-Z., Xu, H.-L., 2004. Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid Loess Plateau of China. Soil and Tillage Research 78, 9-20.
https://doi.org/10.1016/j.still.2003.12.009
[45] Li, F.-M., Wang, P., Wang, J., Xu, J.-Z., 2004. Effects of irrigation before sowing and plastic film mulching on yield and water uptake of spring wheat in semiarid Loess Plateau of China. Agricultural Water Management 67, 77-88.
https://doi.org/10.1016/j.agwat.2004.02.001
[46] Li Feng-Min, Jun Wang, Yu-Zhen Li, Hui-Lian Xu. 2002. Effects of Mulching Duration with Transparent Plastic Film on Yield Formation of Spring Wheat in Semiarid Area. Japanese Journal of Crop Science, 71(s1): 38-39.
[47] Li Feng-Min, Jun Wang, Yu-Zhen Li, Hui-Lian Xu. 2002. Effects of Transparent Plastic Film Mulch and Pre-Sowing on Irrigation Yield of Spring Wheat in Semiarid Loess Plateau. Japanese Journal of Crop Science, 71(s1): 40-41.
[48] 张少宏, 王俊, 方震文, 付鑫, 2022. 冬季绿肥对黄土高原旱作春玉米农田土壤温室气体排放的影响. 环境科学 43, doi: 10.13227/j.hjkx.202111311.
[49] 张少宏, 王俊, Ghimire, R., 邢文超, 胡映明, 张南南, 2021. 黄土高原绿肥填闲种植的水分与产量效应:Meta分析. 中国生态农业学报 29, 1879-1892.
[50] 杨超, 付鑫, 刘文清, 王俊, 2021. 补施氮肥对秸秆覆盖条件下旱作冬小麦光合特性及产量形成的影响. 生态学杂志 40, 1012-1021.
[51] 张少宏, 付鑫, Muhammad, I., 刘文清, 王俊*, 2020. 秸秆和地膜覆盖对黄土高原旱作小麦田土壤团聚体氮组分的影响.水土保持学报 34, 236-241,248.
[52] 袁胜南, 商雨晴, 王俊*, 2020. 不同温度下添加绿肥对旱作农田土壤有机碳矿化的影响. 干旱地区农业研究 38, 45-550.
[53] 王俊, 刘文清, 2020. 旱作农田绿肥填闲种植系统中的生态权衡问题. 澳门新葡澳京官网学报(自然科学版) 50, 695-702.
[54] 商雨晴, 解梦怡, 王俊*, 张少宏, 2020. 不同覆盖措施下旱作玉米田土壤呼吸对氮添加的响应. 澳门新葡澳京官网学报(自然科学版) 50, 711-719.
[55] 解梦怡, 商雨晴, 赵发珠, 王俊*, 2020. 不同覆盖方式下旱作玉米田土壤呼吸对温度变化的响应. 应用生态学报 31, 467-473.
[56] 李志鹏, 王俊*, 商雨晴, 张少宏, 2019. 填闲作物腐解过程及其对后茬冬小麦产量的影响. 干旱地区农业研究 37, 75-82,90
[57] 薄晶晶, 王俊*, 付鑫, 2019. 两种绿肥腐解机器碳氮养分释放动态特征. 生态科学 38, 37-45.
[58] 王俊, 薄晶晶, 付鑫, 2018. 填闲种植研究进展及其在黄土高原旱作农业区的可行性分析. 生态学报, 38(14), 5244-5254.
[59] 付鑫, 王俊*, 张祺, 戈小荣, 2018. 秸秆和地膜覆盖对渭北旱作玉米农田土壤氮组分与产量的影响. 生态学报, 38(19), 6912-6920
[60] 戈小荣, 王俊*, 张祺, 付鑫, 李志鹏, 2018. 不同降水格局下填闲种植对旱作冬小麦农田夏闲期土壤温室气体排放的影响. 草业学报, 27(5), 27-38.
[61] 毛海兰, 付鑫, 赵丹丹, 李蓉蓉, 王俊*, 2018. 秸秆与地膜覆盖条件下旱作玉米田土壤氮组分生长季动态. 水土保持学报, 32: 246-254.
[62] 毛海兰, 王俊*,付鑫, 李蓉蓉, 赵丹丹, 2018. 长期秸秆和地膜覆盖条件下旱作玉米田土壤有机碳及其组分季节动态. 中国生态农业学报, 36(2), 347-356.
[63] 张祺,王俊*, 2018.填闲种植和施氮量对旱作冬小麦农田土壤水分及作物产量的影响.干旱地区农业研究, 36(6), 120-124.
[64] 李蓉蓉, 王俊*, 毛海兰,付鑫, 2017. 秸秆覆盖对冬小麦农田土壤有机碳及其组分的影响. 水土保持学报, 31(3), 187-192.
[65] 付鑫, 王俊*, 赵丹丹, 2017. 地膜覆盖对黄土高原旱作春玉米田土壤碳氮组分的影响. 水土保持学报,31(3), 239-243
[66] 刘全全, 王俊*, 付鑫, 刘文兆, Sainju, U.M., 2016. 不同覆盖措施对黄土高原旱作农田N2O通量的影响. 干旱地区农业研究 34, 115-122.
[67] 赵丹丹, 王俊*, 付鑫, 2016. 长期定位施肥对旱作农田土壤全氮及其组分的影响.水土保持学报 30, 303-307.
[68] 陈荣荣, 刘全全, 王俊*, 刘文兆, Sainju, U.M., 2016. 人工模拟降水条件下旱作农田土壤"Birch效应” 及其响应机制. 生态学报,36(2), 306-317.
[69] 刘全全, 王俊*, 陈荣荣, 刘文兆, Upendra M.Sainju. 2015黄土高原冬小麦田土壤CH4通量对人工降水的短期响应. 应用生态学报,26(1), 140-146.
[70] 涂纯, 王俊*, 官情, 刘文兆, 2013. 秸秆覆盖对旱作冬小麦农田土壤呼吸、作物产量及经济-环境效益的影响.中国生态农业学报 21, 931-937.
[71] 涂纯, 王俊*, 刘文兆, 2012. 不同覆盖条件下旱作农田土壤呼吸及其影响因素. 植物营养与肥料学报 18, 1103-1110.
[72] 官情, 王俊*, 宋淑亚, 刘文兆, 2011. 黄土旱塬区不同覆盖措施对冬小麦农田土壤呼吸的影响. 应用生态学报 22, 1471-1476.
[73] 王俊, 杨新军, 刘文兆, 2010. 半干旱区社会—生态系统干旱恢复力的定量化研究. 地理科学进展 29, 1385-1390.
[74] 王俊, 刘文兆, 钟良平, 李玉山, 2009. 长期连续种植苜蓿草地地上部分生物量与土壤水分的空间差异性. 草业学报 18, 41-46.
[75] 王俊, 孙晶, 杨新军, 刘文兆, Zaccarelli, N., 张向龙, 汪兴玉, 2009. 基于NDVI的社会-生态系统多尺度干扰分析--以甘肃省榆中县为例. 生态学报 29, 1622-1628.
[76] 王俊, 张向龙, 杨新军, 刘文兆, 汪兴玉, 2009. 半干旱区社会-生态系统未来情景分析--以甘肃省榆中县北部山区为例. 生态学杂志 28, 1143-1148.
[77] 王俊, 刘文兆, 胡梦珺, 2008. 黄土丘陵区小流域土壤水分时空变异. 应用生态学报 19, 1241-1247.
[78] 慕韩锋, 王俊*, 刘康, 刘文兆, 党廷辉, 王兵, 2008. 黄土旱塬长期施磷对土壤磷素空间分布及有效性的影响. 植物营养与肥料学报 14, 424-430.
[79] 王俊, 刘文兆, 李凤民, 2007. 半干旱区不同作物与苜蓿轮作对土壤水分恢复与肥力消耗的影响. 土壤学报 44, 179-173.
[80] 王俊, 曹明明, 2007. 半干旱区以集水技术为基础的农牧混合型农业. 澳门新葡澳京官网学报(自然科学版) 37, 161-163.
[81] 孙晶, 王俊*, 杨新军, 2007. 社会-生态系统恢复力研究综述. 生态学报 27, 5371-5381.
[82] 王俊, 刘文兆, 李凤民, 贾宇, 2006. 半干旱黄土区苜蓿草地轮作农田土壤氮素变化. 草业学报 15, 32-37.
[83] 王俊, 李凤民, 贾宇, 王亚军, 2005. 半干旱黄土区苜蓿草地轮作农田土壤氮、磷和有机质变化. 应用生态学报 16, 439-444.
[84] 王俊, 徐进章, 2005. 半干旱地区发展集水型生态农业模式研究. 中国生态农业学报 13, 207-209.
[85] 王俊, 李凤民, 贾宇, 李世清, 宋秋华, 2004. 半干旱地区播前灌溉和地膜覆盖对春小麦产量形成的影响. 中国沙漠 24, 77-82.
[86] 王俊, 李凤民, 李世清, 宋秋华, 2003. 地膜覆盖和底墒灌溉对春小麦产量形成的影响. 西北植物学报 23, 735-738.